Crystal Structures of Two Organo-manganese Complexes Formed by Acetyl Migration to a Co-ordinated Double Bond

By M. A. BENNETT, G. B ROBERTSON, R. WATT, and P. O. WHIMP*

(Research School of Chemistry, The Australian National University, P.O. Box 4, Canberra, A.C.T., 2600, Australia)

Summary The structures of a delocalised pseudo- π -allylic (three electron) π -oxopropyl manganese tricarbonyl complex (A) and a σ -bonded Mn-C oxobutyl tricarbonyl complex (B) have been determined by three-dimensional X-ray structural analysis.

INFRARED and n.m.r. data for the two isomeric products [(A) and (B); empirical formula $C_{25}H_{20}MnO_4P$] from the reaction of MeMn(CO)₅ with o-styryldiphenylphosphine (o-CH₂:CH·C₆H₄·PPh₂; sp) have led to their formulation as π -oxopropyl (I)[†] and acyl (II) derivatives respectively.¹ We now report single crystal X-ray studies of (A) and (B) which confirm that (A) is a π -oxopropyl complex and show that (B) is in fact a σ -bonded Mn–C and Mn–O complex containing a tridentate (o-3-oxobutylphenyl)diphenylphosphine ligand (III). The stereochemistries of (A) and (B) are shown in Figures 1 and 2 respectively.

Crystals of (A) are triclinic, space group $P\overline{1}$, a = 9.30, b = 11.69, c = 10.65 Å, $\alpha = 81.91^{\circ}$, $\beta = 96.64^{\circ}$, $\gamma = 83.72^{\circ}$ Z = 2, while those of (B) are orthorhombic, space group *Pbca*, a = 15.95, b = 17.18, c = 16.28 Å, Z = 8. Reflexion data for both samples were collected on a PICKER FACS-I automatic diffractometer using crystal monochromated Cu- K_{α} radiation. Rejection of observations for which $F_0^2/\sigma(F_0^2) < 3.0$ yielded 2695(A) and 2130(B) unique reflexions. Least-squares analyses of positional and isotropic thermal parameters have converged to conventional *R*-factors of 0.090(A) and 0.079(B). In both cases, the unsubstituted phenyl rings were constrained to D_{6h} symmetry (C-C = 1.397 Å), and neither data set has been corrected for absorption and extinction effects.

In (A), the manganese atom is approximately octahedrally co-ordinated by three CO groups, a phosphorus, and the two terminal atoms of a pseudo- π -allylic oxopropyl group. Consistent with this formulation, C(107)-C(108) [1.44(1) Å] and C(108)-O(109) [1.30(1) Å] are each

† The term oxopropenyl is preferable to "oxapropyl" used previously (ref. 1).

intermediate between their respective single- and doublebond distances.² The dihedral angle [117·2°] between the oxopropyl and the metal co-ordination plane [defined by Mn, C(1), and C(2)] is likewise typical of π -allyl-metal complexes.^{3,4} The manganese- π -oxopropyl distances are 2·225(8), 2·137(9), and 2·070(6) Å to C(107), C(108), and O(109) respectively. Comparison of these distances with

FIGURE 1. Stereochemistry of (A). E.s.d.s of bond-lengths are: Mn-P, 0.002; Mn-C, 0.01; Mn-O, 0.006; P-C, 0.006; C-O, 0.011; C-C, 0.014 Å.

the covalent radii sums (Mn-C, 2.15; Mn-O, 2.04)^{5,6} indicates that the metal- π -oxopropyl bonding is essentially "symmetric".⁷ It seems likely, therefore, that the lengthening of C(107)-C(108) vis-à-vis the normal value for a symmetrically co-ordinated allyl [ca. 1.37 Å] reflects primarily the expected increase in π -electron localisation at C(108).

The manganese atom in (B) is also octahedrally coordinated, the bond distances to the oxobutyl substituent being as expected for Mn–C and Mn–O σ -bonds [Mn–C(107), 2·146(9); Mn–O(110), 2·067(7) Å: cf. foregoing covalent radii sums].^{5,6} The remaining Mn–C distances [Mn–C(108), 2·991(9); Mn–C(109), 2·847(9) Å] indicate little, if any, interaction between these carbon atoms and the manganese. The C–C and C=O distances in the oxobutyl chelate ring are within experimental error of their expected values.

The Mn-P distances in (A) and (B) are virtually identical [Mn-P(A), 2·299(2); Mn-P(B), 2·295(3) Å], but are appreciably shorter than the calculated value for a simple σ -bond (covalent radii sum, 2·48 Å).^{5,6}

FIGURE 2. Stereochemistry of (B). E.s.d.s of bond-lengths are: Mn-P, 0.003; Mn-C, 0.01; Mn-O, 0.007; P-C, 0.007; C-O, 0.013; C-C, 0.016 Å.

The formation of (B) can be readily understood in terms of addition of an acetyl group (probably initially coordinated) at the β -carbon atom of the vinyl substituent of the co-ordinated (sp) ligand. Complex (A) obviously results from acetyl attack at the α -carbon atom of the vinyl group, accompanied by an hydride migration. Similar alternative modes of addition have been observed in the isomerisation of HMn(CO)₄(sp),⁹ where the main product [(o-CH(Me)·C₆H₄·PPh₂)Mn(CO)₄] results from hydride at-

tack at the α -carbon atom, while the minor product $[(o-CH_2 \cdot CH_2 \cdot C_6H_4 \cdot PPh_2)Mn(CO)_4]$ results from addition at

the β -carbon atom.

(Received, March 17th, 1971; Com. 339.)

- ¹ M. A. Bennett and R. Watt, Chem. Comm., 1971, 95.
- ² Chem. Soc. Special Publ., No. 18, 1965.
- ³ M. R. Churchill and R. Mason, Adv. Organometallic Chem., 1967, 5, 93.
- ⁴ A. E. Smith, Acta Cryst., 1965, 18, 331.
- ⁵ M. J. Bennett and R. Mason, Nature, 1965, 205, 760.
- ⁶ M. R. Churchill, in "Perspectives in Structural Chemistry", ed. by J. D. Dunitz and J. A. Ibers, Wiley, New York, 1970, vol. III, p. 126.
 - ⁷ E. M. McPartlin and R. Mason, Chem. Comm., 1967, 16.
 - ⁸ M. A. Bennett, G. B. Robertson, I. B. Tomkins, and P. O. Whimp, Chem. Comm., 1971, 341.
 - ⁹ M. A. Bennett and R. Watt, Chem. Comm., 1971, 94.